Push my mod
This commit is contained in:
@@ -1,3 +1,6 @@
|
||||
__version__ = '0.1.11'
|
||||
|
||||
from manga_ocr.ocr import MangaOcr
|
||||
__version__ = '0.1.10'
|
||||
|
||||
from manga_ocr.ocr import MangaOcr
|
||||
from manga_ocr.ocr import GoogleVision
|
||||
from manga_ocr.ocr import AppleVision
|
||||
from manga_ocr.ocr import AzureComputerVision
|
||||
|
||||
@@ -1,11 +1,11 @@
|
||||
import fire
|
||||
|
||||
from manga_ocr.run import run
|
||||
|
||||
|
||||
def main():
|
||||
fire.Fire(run)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
import fire
|
||||
|
||||
from manga_ocr.run import run
|
||||
|
||||
|
||||
def main():
|
||||
fire.Fire(run)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
||||
292
manga_ocr/ocr.py
292
manga_ocr/ocr.py
@@ -1,61 +1,231 @@
|
||||
import re
|
||||
from pathlib import Path
|
||||
|
||||
import jaconv
|
||||
import torch
|
||||
from PIL import Image
|
||||
from loguru import logger
|
||||
from transformers import AutoFeatureExtractor, AutoTokenizer, VisionEncoderDecoderModel
|
||||
|
||||
|
||||
class MangaOcr:
|
||||
def __init__(self, pretrained_model_name_or_path='kha-white/manga-ocr-base', force_cpu=False):
|
||||
logger.info(f'Loading OCR model from {pretrained_model_name_or_path}')
|
||||
self.feature_extractor = AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path)
|
||||
self.model = VisionEncoderDecoderModel.from_pretrained(pretrained_model_name_or_path)
|
||||
|
||||
if not force_cpu and torch.cuda.is_available():
|
||||
logger.info('Using CUDA')
|
||||
self.model.cuda()
|
||||
elif not force_cpu and torch.backends.mps.is_available():
|
||||
logger.info('Using MPS')
|
||||
self.model.to('mps')
|
||||
else:
|
||||
logger.info('Using CPU')
|
||||
|
||||
example_path = Path(__file__).parent / 'assets/example.jpg'
|
||||
if not example_path.is_file():
|
||||
example_path = Path(__file__).parent.parent / 'assets/example.jpg'
|
||||
self(example_path)
|
||||
|
||||
logger.info('OCR ready')
|
||||
|
||||
def __call__(self, img_or_path):
|
||||
if isinstance(img_or_path, str) or isinstance(img_or_path, Path):
|
||||
img = Image.open(img_or_path)
|
||||
elif isinstance(img_or_path, Image.Image):
|
||||
img = img_or_path
|
||||
else:
|
||||
raise ValueError(f'img_or_path must be a path or PIL.Image, instead got: {img_or_path}')
|
||||
|
||||
img = img.convert('L').convert('RGB')
|
||||
|
||||
x = self._preprocess(img)
|
||||
x = self.model.generate(x[None].to(self.model.device), max_length=300)[0].cpu()
|
||||
x = self.tokenizer.decode(x, skip_special_tokens=True)
|
||||
x = post_process(x)
|
||||
return x
|
||||
|
||||
def _preprocess(self, img):
|
||||
pixel_values = self.feature_extractor(img, return_tensors="pt").pixel_values
|
||||
return pixel_values.squeeze()
|
||||
|
||||
|
||||
def post_process(text):
|
||||
text = ''.join(text.split())
|
||||
text = text.replace('…', '...')
|
||||
text = re.sub('[・.]{2,}', lambda x: (x.end() - x.start()) * '.', text)
|
||||
text = jaconv.h2z(text, ascii=True, digit=True)
|
||||
|
||||
return text
|
||||
import re
|
||||
import os
|
||||
import io
|
||||
from pathlib import Path
|
||||
import warnings
|
||||
import configparser
|
||||
import time
|
||||
import sys
|
||||
import platform
|
||||
|
||||
import jaconv
|
||||
import torch
|
||||
from PIL import Image
|
||||
from loguru import logger
|
||||
from transformers import ViTImageProcessor, AutoTokenizer, VisionEncoderDecoderModel
|
||||
|
||||
try:
|
||||
import Vision
|
||||
import objc
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
try:
|
||||
from google.cloud import vision
|
||||
from google.oauth2 import service_account
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
try:
|
||||
from azure.cognitiveservices.vision.computervision import ComputerVisionClient
|
||||
from azure.cognitiveservices.vision.computervision.models import OperationStatusCodes
|
||||
from msrest.authentication import CognitiveServicesCredentials
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
class MangaOcr:
|
||||
def __init__(self, pretrained_model_name_or_path='kha-white/manga-ocr-base', force_cpu=False):
|
||||
logger.info(f'Loading OCR model from {pretrained_model_name_or_path}')
|
||||
self.processor = ViTImageProcessor.from_pretrained(pretrained_model_name_or_path)
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path)
|
||||
self.model = VisionEncoderDecoderModel.from_pretrained(pretrained_model_name_or_path)
|
||||
|
||||
if not force_cpu and torch.cuda.is_available():
|
||||
logger.info('Using CUDA')
|
||||
self.model.cuda()
|
||||
elif not force_cpu and torch.backends.mps.is_available():
|
||||
logger.info('Using MPS')
|
||||
warnings.filterwarnings("ignore", message=".*MPS: no support.*")
|
||||
self.model.to('mps')
|
||||
else:
|
||||
logger.info('Using CPU')
|
||||
|
||||
logger.info('Manga OCR ready')
|
||||
|
||||
def __call__(self, img_or_path):
|
||||
if isinstance(img_or_path, str) or isinstance(img_or_path, Path):
|
||||
img = Image.open(img_or_path)
|
||||
elif isinstance(img_or_path, Image.Image):
|
||||
img = img_or_path
|
||||
else:
|
||||
raise ValueError(f'img_or_path must be a path or PIL.Image, instead got: {img_or_path}')
|
||||
|
||||
img = img.convert('L').convert('RGB')
|
||||
|
||||
x = self._preprocess(img)
|
||||
x = self.model.generate(x[None].to(self.model.device), max_length=300)[0].cpu()
|
||||
x = self.tokenizer.decode(x, skip_special_tokens=True)
|
||||
x = post_process(x)
|
||||
return x
|
||||
|
||||
def _preprocess(self, img):
|
||||
pixel_values = self.processor(img, return_tensors="pt").pixel_values
|
||||
return pixel_values.squeeze()
|
||||
|
||||
class GoogleVision:
|
||||
def __init__(self):
|
||||
if 'google.cloud' not in sys.modules:
|
||||
logger.warning('google-cloud-vision not available, Google Vision will not work!')
|
||||
self.available = False
|
||||
else:
|
||||
logger.info(f'Parsing Google credentials')
|
||||
google_credentials_file = os.path.join(os.path.expanduser('~'),'.config','google_vision.json')
|
||||
try:
|
||||
google_credentials = service_account.Credentials.from_service_account_file(google_credentials_file)
|
||||
self.client = vision.ImageAnnotatorClient(credentials=google_credentials)
|
||||
self.available = True
|
||||
logger.info('Google Vision ready')
|
||||
except:
|
||||
logger.warning('Error parsing Google credentials, Google Vision will not work!')
|
||||
self.available = False
|
||||
|
||||
def __call__(self, img_or_path):
|
||||
if not self.available:
|
||||
return "Engine not available!"
|
||||
|
||||
if isinstance(img_or_path, str) or isinstance(img_or_path, Path):
|
||||
img = Image.open(img_or_path)
|
||||
elif isinstance(img_or_path, Image.Image):
|
||||
img = img_or_path
|
||||
else:
|
||||
raise ValueError(f'img_or_path must be a path or PIL.Image, instead got: {img_or_path}')
|
||||
|
||||
image_bytes = self._preprocess(img)
|
||||
image = vision.Image(content=image_bytes)
|
||||
response = self.client.text_detection(image=image)
|
||||
texts = response.text_annotations
|
||||
x = post_process(texts[0].description)
|
||||
return x
|
||||
|
||||
def _preprocess(self, img):
|
||||
image_bytes = io.BytesIO()
|
||||
img.save(image_bytes, format=img.format)
|
||||
return image_bytes.getvalue()
|
||||
|
||||
class AppleVision:
|
||||
def __init__(self):
|
||||
if sys.platform != "darwin":
|
||||
logger.warning('Apple Vision is not supported on non-macOS platforms!')
|
||||
self.available = False
|
||||
elif int(platform.mac_ver()[0].split('.')[0]) < 13:
|
||||
logger.warning('Apple Vision is not supported on macOS older than Ventura/13.0!')
|
||||
self.available = False
|
||||
else:
|
||||
if 'objc' not in sys.modules:
|
||||
logger.warning('pyobjc not available, Apple Vision will not work!')
|
||||
self.available = False
|
||||
else:
|
||||
self.available = True
|
||||
logger.info('Apple Vision ready')
|
||||
|
||||
def __call__(self, img_or_path):
|
||||
if not self.available:
|
||||
return "Engine not available!"
|
||||
|
||||
if isinstance(img_or_path, str) or isinstance(img_or_path, Path):
|
||||
img = Image.open(img_or_path)
|
||||
elif isinstance(img_or_path, Image.Image):
|
||||
img = img_or_path
|
||||
else:
|
||||
raise ValueError(f'img_or_path must be a path or PIL.Image, instead got: {img_or_path}')
|
||||
|
||||
with objc.autorelease_pool():
|
||||
req = Vision.VNRecognizeTextRequest.alloc().init()
|
||||
|
||||
req.setRecognitionLevel_(0)
|
||||
req.setRecognitionLanguages_(['ja','en'])
|
||||
|
||||
handler = Vision.VNImageRequestHandler.alloc().initWithData_options_(
|
||||
self._preprocess(img), None
|
||||
)
|
||||
|
||||
success = handler.performRequests_error_([req], None)
|
||||
res = ''
|
||||
if success:
|
||||
for result in req.results():
|
||||
res += result.text() + ' '
|
||||
|
||||
req.dealloc()
|
||||
handler.dealloc()
|
||||
x = post_process(res)
|
||||
return x
|
||||
|
||||
def _preprocess(self, img):
|
||||
image_bytes = io.BytesIO()
|
||||
img.save(image_bytes, format=img.format)
|
||||
return image_bytes.getvalue()
|
||||
|
||||
class AzureComputerVision:
|
||||
def __init__(self):
|
||||
if 'azure.cognitiveservices.vision.computervision' not in sys.modules:
|
||||
logger.warning('azure-cognitiveservices-vision-computervision not available, Azure Computer Vision will not work!')
|
||||
self.available = False
|
||||
else:
|
||||
logger.info(f'Parsing Azure credentials')
|
||||
azure_credentials_file = os.path.join(os.path.expanduser('~'),'.config','azure_computer_vision.ini')
|
||||
try:
|
||||
azure_credentials = configparser.ConfigParser()
|
||||
azure_credentials.read(azure_credentials_file)
|
||||
self.client = ComputerVisionClient(azure_credentials['config']['endpoint'], CognitiveServicesCredentials(azure_credentials['config']['api_key']))
|
||||
self.available = True
|
||||
logger.info('Azure Computer Vision ready')
|
||||
except:
|
||||
logger.warning('Error parsing Azure credentials, Azure Computer Vision will not work!')
|
||||
self.available = False
|
||||
|
||||
def __call__(self, img_or_path):
|
||||
if not self.available:
|
||||
return "Engine not available!"
|
||||
|
||||
if isinstance(img_or_path, str) or isinstance(img_or_path, Path):
|
||||
img = Image.open(img_or_path)
|
||||
elif isinstance(img_or_path, Image.Image):
|
||||
img = img_or_path
|
||||
else:
|
||||
raise ValueError(f'img_or_path must be a path or PIL.Image, instead got: {img_or_path}')
|
||||
|
||||
image_io = self._preprocess(img)
|
||||
read_response = self.client.read_in_stream(image_io, raw=True)
|
||||
|
||||
read_operation_location = read_response.headers["Operation-Location"]
|
||||
operation_id = read_operation_location.split("/")[-1]
|
||||
|
||||
while True:
|
||||
read_result = self.client.get_read_result(operation_id)
|
||||
if read_result.status.lower() not in ['notstarted', 'running']:
|
||||
break
|
||||
time.sleep(0.3)
|
||||
|
||||
res = ''
|
||||
if read_result.status == OperationStatusCodes.succeeded:
|
||||
for text_result in read_result.analyze_result.read_results:
|
||||
for line in text_result.lines:
|
||||
res += line.text + ' '
|
||||
|
||||
x = post_process(res)
|
||||
return x
|
||||
|
||||
def _preprocess(self, img):
|
||||
image_io = io.BytesIO()
|
||||
img.save(image_io, format=img.format)
|
||||
image_io.seek(0)
|
||||
return image_io
|
||||
|
||||
|
||||
def post_process(text):
|
||||
text = ''.join(text.split())
|
||||
text = text.replace('…', '...')
|
||||
text = re.sub('[・.]{2,}', lambda x: (x.end() - x.start()) * '.', text)
|
||||
text = jaconv.h2z(text, ascii=True, digit=True)
|
||||
|
||||
return text
|
||||
|
||||
386
manga_ocr/run.py
386
manga_ocr/run.py
@@ -1,134 +1,252 @@
|
||||
import sys
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
import fire
|
||||
import numpy as np
|
||||
import pyperclip
|
||||
from PIL import Image
|
||||
from PIL import UnidentifiedImageError
|
||||
from loguru import logger
|
||||
|
||||
from manga_ocr import MangaOcr
|
||||
|
||||
|
||||
def are_images_identical(img1, img2):
|
||||
if None in (img1, img2):
|
||||
return img1 == img2
|
||||
|
||||
img1 = np.array(img1)
|
||||
img2 = np.array(img2)
|
||||
|
||||
return (img1.shape == img2.shape) and (img1 == img2).all()
|
||||
|
||||
|
||||
def process_and_write_results(mocr, img_or_path, write_to):
|
||||
t0 = time.time()
|
||||
text = mocr(img_or_path)
|
||||
t1 = time.time()
|
||||
|
||||
logger.info(f'Text recognized in {t1 - t0:0.03f} s: {text}')
|
||||
|
||||
if write_to == 'clipboard':
|
||||
pyperclip.copy(text)
|
||||
else:
|
||||
write_to = Path(write_to)
|
||||
if write_to.suffix != '.txt':
|
||||
raise ValueError('write_to must be either "clipboard" or a path to a text file')
|
||||
|
||||
with write_to.open('a', encoding="utf-8") as f:
|
||||
f.write(text + '\n')
|
||||
|
||||
|
||||
def get_path_key(path):
|
||||
return path, path.lstat().st_mtime
|
||||
|
||||
|
||||
def run(read_from='clipboard',
|
||||
write_to='clipboard',
|
||||
pretrained_model_name_or_path='kha-white/manga-ocr-base',
|
||||
force_cpu=False,
|
||||
delay_secs=0.1,
|
||||
verbose=False
|
||||
):
|
||||
"""
|
||||
Run OCR in the background, waiting for new images to appear either in system clipboard, or a directory.
|
||||
Recognized texts can be either saved to system clipboard, or appended to a text file.
|
||||
|
||||
:param read_from: Specifies where to read input images from. Can be either "clipboard", or a path to a directory.
|
||||
:param write_to: Specifies where to save recognized texts to. Can be either "clipboard", or a path to a text file.
|
||||
:param pretrained_model_name_or_path: Path to a trained model, either local or from Transformers' model hub.
|
||||
:param force_cpu: If True, OCR will use CPU even if GPU is available.
|
||||
:param verbose: If True, unhides all warnings.
|
||||
:param delay_secs: How often to check for new images, in seconds.
|
||||
"""
|
||||
|
||||
mocr = MangaOcr(pretrained_model_name_or_path, force_cpu)
|
||||
|
||||
if sys.platform not in ('darwin', 'win32') and write_to == 'clipboard':
|
||||
# Check if the system is using Wayland
|
||||
import os
|
||||
if os.environ.get('WAYLAND_DISPLAY'):
|
||||
# Check if the wl-clipboard package is installed
|
||||
if os.system("which wl-copy > /dev/null") == 0:
|
||||
pyperclip.set_clipboard("wl-clipboard")
|
||||
else:
|
||||
msg = 'Your session uses wayland and does not have wl-clipboard installed. ' \
|
||||
'Install wl-clipboard for write in clipboard to work.'
|
||||
raise NotImplementedError(msg)
|
||||
|
||||
if read_from == 'clipboard':
|
||||
from PIL import ImageGrab
|
||||
logger.info('Reading from clipboard')
|
||||
|
||||
img = None
|
||||
while True:
|
||||
old_img = img
|
||||
|
||||
try:
|
||||
img = ImageGrab.grabclipboard()
|
||||
except OSError as error:
|
||||
if not verbose and "cannot identify image file" in str(error):
|
||||
# Pillow error when clipboard hasn't changed since last grab (Linux)
|
||||
pass
|
||||
elif not verbose and "target image/png not available" in str(error):
|
||||
# Pillow error when clipboard contains text (Linux, X11)
|
||||
pass
|
||||
else:
|
||||
logger.warning('Error while reading from clipboard ({})'.format(error))
|
||||
else:
|
||||
if isinstance(img, Image.Image) and not are_images_identical(img, old_img):
|
||||
process_and_write_results(mocr, img, write_to)
|
||||
|
||||
time.sleep(delay_secs)
|
||||
|
||||
else:
|
||||
read_from = Path(read_from)
|
||||
if not read_from.is_dir():
|
||||
raise ValueError('read_from must be either "clipboard" or a path to a directory')
|
||||
|
||||
logger.info(f'Reading from directory {read_from}')
|
||||
|
||||
old_paths = set()
|
||||
for path in read_from.iterdir():
|
||||
old_paths.add(get_path_key(path))
|
||||
|
||||
while True:
|
||||
for path in read_from.iterdir():
|
||||
path_key = get_path_key(path)
|
||||
if path_key not in old_paths:
|
||||
old_paths.add(path_key)
|
||||
|
||||
try:
|
||||
img = Image.open(path)
|
||||
img.load()
|
||||
except (UnidentifiedImageError, OSError) as e:
|
||||
logger.warning(f'Error while reading file {path}: {e}')
|
||||
else:
|
||||
process_and_write_results(mocr, img, write_to)
|
||||
|
||||
time.sleep(delay_secs)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
fire.Fire(run)
|
||||
import sys
|
||||
import time
|
||||
import threading
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import fire
|
||||
import numpy as np
|
||||
import pyperclip
|
||||
from PIL import Image
|
||||
from PIL import UnidentifiedImageError
|
||||
from loguru import logger
|
||||
from pynput import keyboard
|
||||
|
||||
from manga_ocr import MangaOcr
|
||||
from manga_ocr import GoogleVision
|
||||
from manga_ocr import AppleVision
|
||||
from manga_ocr import AzureComputerVision
|
||||
|
||||
engines = ['avision', 'gvision', 'azure', 'mangaocr']
|
||||
|
||||
|
||||
def get_engine_name(engine):
|
||||
engine_names = ['Apple Vision', 'Google Vision', 'Azure Computer Vision', 'Manga OCR']
|
||||
return engine_names[engines.index(engine)]
|
||||
|
||||
|
||||
def are_images_identical(img1, img2):
|
||||
if None in (img1, img2):
|
||||
return img1 == img2
|
||||
|
||||
img1 = np.array(img1)
|
||||
img2 = np.array(img2)
|
||||
|
||||
return (img1.shape == img2.shape) and (img1 == img2).all()
|
||||
|
||||
|
||||
def process_and_write_results(mocr, avision, gvision, azure, img_or_path, write_to, engine):
|
||||
t0 = time.time()
|
||||
if engine == 'gvision':
|
||||
text = gvision(img_or_path)
|
||||
elif engine == 'avision':
|
||||
text = avision(img_or_path)
|
||||
elif engine == 'azure':
|
||||
text = azure(img_or_path)
|
||||
else:
|
||||
text = mocr(img_or_path)
|
||||
t1 = time.time()
|
||||
|
||||
logger.opt(ansi=True).info(f"Text recognized in {t1 - t0:0.03f}s using <cyan>{get_engine_name(engine)}</cyan>: {text}")
|
||||
|
||||
if write_to == 'clipboard':
|
||||
pyperclip.copy(text)
|
||||
else:
|
||||
write_to = Path(write_to)
|
||||
if write_to.suffix != '.txt':
|
||||
raise ValueError('write_to must be either "clipboard" or a path to a text file')
|
||||
|
||||
with write_to.open('a', encoding="utf-8") as f:
|
||||
f.write(text + '\n')
|
||||
|
||||
|
||||
def get_path_key(path):
|
||||
return path, path.lstat().st_mtime
|
||||
|
||||
|
||||
def run(read_from='clipboard',
|
||||
write_to='clipboard',
|
||||
pretrained_model_name_or_path='kha-white/manga-ocr-base',
|
||||
force_cpu=False,
|
||||
delay_secs=0.5,
|
||||
engine='mangaocr',
|
||||
verbose=False
|
||||
):
|
||||
"""
|
||||
Run OCR in the background, waiting for new images to appear either in system clipboard, or a directory.
|
||||
Recognized texts can be either saved to system clipboard, or appended to a text file.
|
||||
|
||||
:param read_from: Specifies where to read input images from. Can be either "clipboard", or a path to a directory.
|
||||
:param write_to: Specifies where to save recognized texts to. Can be either "clipboard", or a path to a text file.
|
||||
:param pretrained_model_name_or_path: Path to a trained model, either local or from Transformers' model hub.
|
||||
:param force_cpu: If True, OCR will use CPU even if GPU is available.
|
||||
:param delay_secs: How often to check for new images, in seconds.
|
||||
:param engine: OCR engine to use. Available: "mangaocr", "gvision", "avision", "azure".
|
||||
:param verbose: If True, unhides all warnings.
|
||||
"""
|
||||
|
||||
fmt = "<green>{time:HH:mm:ss.SSS}</green> | <level>{message}</level>"
|
||||
config = {
|
||||
"handlers": [
|
||||
{"sink": sys.stderr, "format": fmt},
|
||||
],
|
||||
}
|
||||
logger.configure(**config)
|
||||
|
||||
mocr = MangaOcr(pretrained_model_name_or_path, force_cpu)
|
||||
gvision = GoogleVision()
|
||||
azure = AzureComputerVision()
|
||||
avision = AppleVision()
|
||||
|
||||
if engine not in engines:
|
||||
msg = 'Unknown OCR engine!'
|
||||
raise NotImplementedError(msg)
|
||||
|
||||
if sys.platform not in ('darwin', 'win32') and write_to == 'clipboard':
|
||||
# Check if the system is using Wayland
|
||||
import os
|
||||
if os.environ.get('WAYLAND_DISPLAY'):
|
||||
# Check if the wl-clipboard package is installed
|
||||
if os.system("which wl-copy > /dev/null") == 0:
|
||||
pyperclip.set_clipboard("wl-clipboard")
|
||||
else:
|
||||
msg = 'Your session uses wayland and does not have wl-clipboard installed. ' \
|
||||
'Install wl-clipboard for write in clipboard to work.'
|
||||
raise NotImplementedError(msg)
|
||||
|
||||
if read_from == 'clipboard':
|
||||
from PIL import ImageGrab
|
||||
logger.info('Reading from clipboard')
|
||||
|
||||
paused = False
|
||||
global just_unpaused
|
||||
just_unpaused = True
|
||||
img = None
|
||||
|
||||
def on_key_press(key):
|
||||
global tmp_paused
|
||||
if key == keyboard.Key.cmd_r or key == keyboard.Key.ctrl_r:
|
||||
tmp_paused = True
|
||||
|
||||
def on_key_release(key):
|
||||
global tmp_paused
|
||||
global just_unpaused
|
||||
if key == keyboard.Key.cmd_r or key == keyboard.Key.ctrl_r:
|
||||
tmp_paused = False
|
||||
just_unpaused = True
|
||||
|
||||
global tmp_paused
|
||||
tmp_paused = False
|
||||
|
||||
tmp_paused_listener = keyboard.Listener(
|
||||
on_press=on_key_press,
|
||||
on_release=on_key_release)
|
||||
tmp_paused_listener.start()
|
||||
else:
|
||||
read_from = Path(read_from)
|
||||
if not read_from.is_dir():
|
||||
raise ValueError('read_from must be either "clipboard" or a path to a directory')
|
||||
|
||||
logger.info(f'Reading from directory {read_from}')
|
||||
|
||||
old_paths = set()
|
||||
for path in read_from.iterdir():
|
||||
old_paths.add(get_path_key(path))
|
||||
|
||||
def getchar_thread():
|
||||
global user_input
|
||||
import os
|
||||
if os.name == 'nt': # how it works on windows
|
||||
import msvcrt
|
||||
while True:
|
||||
user_input = msvcrt.getch()
|
||||
if user_input.lower() in 'tq':
|
||||
break
|
||||
else:
|
||||
import tty, termios, sys
|
||||
fd = sys.stdin.fileno()
|
||||
old_settings = termios.tcgetattr(fd)
|
||||
try:
|
||||
tty.setcbreak(sys.stdin.fileno())
|
||||
while True:
|
||||
user_input = sys.stdin.read(1)
|
||||
if user_input.lower() in 'tq':
|
||||
break
|
||||
finally:
|
||||
termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)
|
||||
|
||||
global user_input
|
||||
user_input = ''
|
||||
|
||||
user_input_thread = threading.Thread(target=getchar_thread, daemon=True)
|
||||
user_input_thread.start()
|
||||
|
||||
while True:
|
||||
if user_input != '':
|
||||
if user_input.lower() in 'tq':
|
||||
if read_from == 'clipboard':
|
||||
tmp_paused_listener.stop()
|
||||
user_input_thread.join()
|
||||
logger.info('Terminated!')
|
||||
break
|
||||
if read_from == 'clipboard' and user_input.lower() == 'p':
|
||||
if paused:
|
||||
logger.info('Unpaused!')
|
||||
just_unpaused = True
|
||||
else:
|
||||
logger.info('Paused!')
|
||||
paused = not paused
|
||||
elif user_input.lower() == 's':
|
||||
if engine == engines[-1]:
|
||||
engine = engines[0]
|
||||
else:
|
||||
engine = engines[engines.index(engine) + 1]
|
||||
|
||||
logger.opt(ansi=True).info(f"Switched to <cyan>{get_engine_name(engine)}</cyan>!")
|
||||
elif user_input.lower() in 'agvm':
|
||||
new_engine = engines['agvm'.find(user_input.lower())]
|
||||
if engine != new_engine:
|
||||
engine = new_engine
|
||||
logger.opt(ansi=True).info(f"Switched to <cyan>{get_engine_name(engine)}</cyan>!")
|
||||
|
||||
user_input = ''
|
||||
|
||||
if read_from == 'clipboard':
|
||||
if not paused and not tmp_paused:
|
||||
old_img = img
|
||||
|
||||
try:
|
||||
img = ImageGrab.grabclipboard()
|
||||
except OSError as error:
|
||||
if not verbose and "cannot identify image file" in str(error):
|
||||
# Pillow error when clipboard hasn't changed since last grab (Linux)
|
||||
pass
|
||||
elif not verbose and "target image/png not available" in str(error):
|
||||
# Pillow error when clipboard contains text (Linux, X11)
|
||||
pass
|
||||
else:
|
||||
logger.warning('Error while reading from clipboard ({})'.format(error))
|
||||
else:
|
||||
if not just_unpaused and isinstance(img, Image.Image) and not are_images_identical(img, old_img):
|
||||
process_and_write_results(mocr, avision, gvision, azure, img, write_to, engine)
|
||||
|
||||
if just_unpaused:
|
||||
just_unpaused = False
|
||||
else:
|
||||
for path in read_from.iterdir():
|
||||
path_key = get_path_key(path)
|
||||
if path_key not in old_paths:
|
||||
old_paths.add(path_key)
|
||||
|
||||
try:
|
||||
img = Image.open(path)
|
||||
img.load()
|
||||
except (UnidentifiedImageError, OSError) as e:
|
||||
logger.warning(f'Error while reading file {path}: {e}')
|
||||
else:
|
||||
process_and_write_results(mocr, avision, gvision, azure, img, write_to, engine)
|
||||
|
||||
time.sleep(delay_secs)
|
||||
|
||||
if __name__ == '__main__':
|
||||
fire.Fire(run)
|
||||
|
||||
@@ -8,3 +8,7 @@ pyperclip
|
||||
torch>=1.0
|
||||
transformers>=4.25.0
|
||||
unidic_lite
|
||||
google-cloud-vision
|
||||
azure-cognitiveservices-vision-computervision
|
||||
pyobjc
|
||||
pynput
|
||||
Reference in New Issue
Block a user