Push my mod
This commit is contained in:
292
manga_ocr/ocr.py
292
manga_ocr/ocr.py
@@ -1,61 +1,231 @@
|
||||
import re
|
||||
from pathlib import Path
|
||||
|
||||
import jaconv
|
||||
import torch
|
||||
from PIL import Image
|
||||
from loguru import logger
|
||||
from transformers import AutoFeatureExtractor, AutoTokenizer, VisionEncoderDecoderModel
|
||||
|
||||
|
||||
class MangaOcr:
|
||||
def __init__(self, pretrained_model_name_or_path='kha-white/manga-ocr-base', force_cpu=False):
|
||||
logger.info(f'Loading OCR model from {pretrained_model_name_or_path}')
|
||||
self.feature_extractor = AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path)
|
||||
self.model = VisionEncoderDecoderModel.from_pretrained(pretrained_model_name_or_path)
|
||||
|
||||
if not force_cpu and torch.cuda.is_available():
|
||||
logger.info('Using CUDA')
|
||||
self.model.cuda()
|
||||
elif not force_cpu and torch.backends.mps.is_available():
|
||||
logger.info('Using MPS')
|
||||
self.model.to('mps')
|
||||
else:
|
||||
logger.info('Using CPU')
|
||||
|
||||
example_path = Path(__file__).parent / 'assets/example.jpg'
|
||||
if not example_path.is_file():
|
||||
example_path = Path(__file__).parent.parent / 'assets/example.jpg'
|
||||
self(example_path)
|
||||
|
||||
logger.info('OCR ready')
|
||||
|
||||
def __call__(self, img_or_path):
|
||||
if isinstance(img_or_path, str) or isinstance(img_or_path, Path):
|
||||
img = Image.open(img_or_path)
|
||||
elif isinstance(img_or_path, Image.Image):
|
||||
img = img_or_path
|
||||
else:
|
||||
raise ValueError(f'img_or_path must be a path or PIL.Image, instead got: {img_or_path}')
|
||||
|
||||
img = img.convert('L').convert('RGB')
|
||||
|
||||
x = self._preprocess(img)
|
||||
x = self.model.generate(x[None].to(self.model.device), max_length=300)[0].cpu()
|
||||
x = self.tokenizer.decode(x, skip_special_tokens=True)
|
||||
x = post_process(x)
|
||||
return x
|
||||
|
||||
def _preprocess(self, img):
|
||||
pixel_values = self.feature_extractor(img, return_tensors="pt").pixel_values
|
||||
return pixel_values.squeeze()
|
||||
|
||||
|
||||
def post_process(text):
|
||||
text = ''.join(text.split())
|
||||
text = text.replace('…', '...')
|
||||
text = re.sub('[・.]{2,}', lambda x: (x.end() - x.start()) * '.', text)
|
||||
text = jaconv.h2z(text, ascii=True, digit=True)
|
||||
|
||||
return text
|
||||
import re
|
||||
import os
|
||||
import io
|
||||
from pathlib import Path
|
||||
import warnings
|
||||
import configparser
|
||||
import time
|
||||
import sys
|
||||
import platform
|
||||
|
||||
import jaconv
|
||||
import torch
|
||||
from PIL import Image
|
||||
from loguru import logger
|
||||
from transformers import ViTImageProcessor, AutoTokenizer, VisionEncoderDecoderModel
|
||||
|
||||
try:
|
||||
import Vision
|
||||
import objc
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
try:
|
||||
from google.cloud import vision
|
||||
from google.oauth2 import service_account
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
try:
|
||||
from azure.cognitiveservices.vision.computervision import ComputerVisionClient
|
||||
from azure.cognitiveservices.vision.computervision.models import OperationStatusCodes
|
||||
from msrest.authentication import CognitiveServicesCredentials
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
class MangaOcr:
|
||||
def __init__(self, pretrained_model_name_or_path='kha-white/manga-ocr-base', force_cpu=False):
|
||||
logger.info(f'Loading OCR model from {pretrained_model_name_or_path}')
|
||||
self.processor = ViTImageProcessor.from_pretrained(pretrained_model_name_or_path)
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path)
|
||||
self.model = VisionEncoderDecoderModel.from_pretrained(pretrained_model_name_or_path)
|
||||
|
||||
if not force_cpu and torch.cuda.is_available():
|
||||
logger.info('Using CUDA')
|
||||
self.model.cuda()
|
||||
elif not force_cpu and torch.backends.mps.is_available():
|
||||
logger.info('Using MPS')
|
||||
warnings.filterwarnings("ignore", message=".*MPS: no support.*")
|
||||
self.model.to('mps')
|
||||
else:
|
||||
logger.info('Using CPU')
|
||||
|
||||
logger.info('Manga OCR ready')
|
||||
|
||||
def __call__(self, img_or_path):
|
||||
if isinstance(img_or_path, str) or isinstance(img_or_path, Path):
|
||||
img = Image.open(img_or_path)
|
||||
elif isinstance(img_or_path, Image.Image):
|
||||
img = img_or_path
|
||||
else:
|
||||
raise ValueError(f'img_or_path must be a path or PIL.Image, instead got: {img_or_path}')
|
||||
|
||||
img = img.convert('L').convert('RGB')
|
||||
|
||||
x = self._preprocess(img)
|
||||
x = self.model.generate(x[None].to(self.model.device), max_length=300)[0].cpu()
|
||||
x = self.tokenizer.decode(x, skip_special_tokens=True)
|
||||
x = post_process(x)
|
||||
return x
|
||||
|
||||
def _preprocess(self, img):
|
||||
pixel_values = self.processor(img, return_tensors="pt").pixel_values
|
||||
return pixel_values.squeeze()
|
||||
|
||||
class GoogleVision:
|
||||
def __init__(self):
|
||||
if 'google.cloud' not in sys.modules:
|
||||
logger.warning('google-cloud-vision not available, Google Vision will not work!')
|
||||
self.available = False
|
||||
else:
|
||||
logger.info(f'Parsing Google credentials')
|
||||
google_credentials_file = os.path.join(os.path.expanduser('~'),'.config','google_vision.json')
|
||||
try:
|
||||
google_credentials = service_account.Credentials.from_service_account_file(google_credentials_file)
|
||||
self.client = vision.ImageAnnotatorClient(credentials=google_credentials)
|
||||
self.available = True
|
||||
logger.info('Google Vision ready')
|
||||
except:
|
||||
logger.warning('Error parsing Google credentials, Google Vision will not work!')
|
||||
self.available = False
|
||||
|
||||
def __call__(self, img_or_path):
|
||||
if not self.available:
|
||||
return "Engine not available!"
|
||||
|
||||
if isinstance(img_or_path, str) or isinstance(img_or_path, Path):
|
||||
img = Image.open(img_or_path)
|
||||
elif isinstance(img_or_path, Image.Image):
|
||||
img = img_or_path
|
||||
else:
|
||||
raise ValueError(f'img_or_path must be a path or PIL.Image, instead got: {img_or_path}')
|
||||
|
||||
image_bytes = self._preprocess(img)
|
||||
image = vision.Image(content=image_bytes)
|
||||
response = self.client.text_detection(image=image)
|
||||
texts = response.text_annotations
|
||||
x = post_process(texts[0].description)
|
||||
return x
|
||||
|
||||
def _preprocess(self, img):
|
||||
image_bytes = io.BytesIO()
|
||||
img.save(image_bytes, format=img.format)
|
||||
return image_bytes.getvalue()
|
||||
|
||||
class AppleVision:
|
||||
def __init__(self):
|
||||
if sys.platform != "darwin":
|
||||
logger.warning('Apple Vision is not supported on non-macOS platforms!')
|
||||
self.available = False
|
||||
elif int(platform.mac_ver()[0].split('.')[0]) < 13:
|
||||
logger.warning('Apple Vision is not supported on macOS older than Ventura/13.0!')
|
||||
self.available = False
|
||||
else:
|
||||
if 'objc' not in sys.modules:
|
||||
logger.warning('pyobjc not available, Apple Vision will not work!')
|
||||
self.available = False
|
||||
else:
|
||||
self.available = True
|
||||
logger.info('Apple Vision ready')
|
||||
|
||||
def __call__(self, img_or_path):
|
||||
if not self.available:
|
||||
return "Engine not available!"
|
||||
|
||||
if isinstance(img_or_path, str) or isinstance(img_or_path, Path):
|
||||
img = Image.open(img_or_path)
|
||||
elif isinstance(img_or_path, Image.Image):
|
||||
img = img_or_path
|
||||
else:
|
||||
raise ValueError(f'img_or_path must be a path or PIL.Image, instead got: {img_or_path}')
|
||||
|
||||
with objc.autorelease_pool():
|
||||
req = Vision.VNRecognizeTextRequest.alloc().init()
|
||||
|
||||
req.setRecognitionLevel_(0)
|
||||
req.setRecognitionLanguages_(['ja','en'])
|
||||
|
||||
handler = Vision.VNImageRequestHandler.alloc().initWithData_options_(
|
||||
self._preprocess(img), None
|
||||
)
|
||||
|
||||
success = handler.performRequests_error_([req], None)
|
||||
res = ''
|
||||
if success:
|
||||
for result in req.results():
|
||||
res += result.text() + ' '
|
||||
|
||||
req.dealloc()
|
||||
handler.dealloc()
|
||||
x = post_process(res)
|
||||
return x
|
||||
|
||||
def _preprocess(self, img):
|
||||
image_bytes = io.BytesIO()
|
||||
img.save(image_bytes, format=img.format)
|
||||
return image_bytes.getvalue()
|
||||
|
||||
class AzureComputerVision:
|
||||
def __init__(self):
|
||||
if 'azure.cognitiveservices.vision.computervision' not in sys.modules:
|
||||
logger.warning('azure-cognitiveservices-vision-computervision not available, Azure Computer Vision will not work!')
|
||||
self.available = False
|
||||
else:
|
||||
logger.info(f'Parsing Azure credentials')
|
||||
azure_credentials_file = os.path.join(os.path.expanduser('~'),'.config','azure_computer_vision.ini')
|
||||
try:
|
||||
azure_credentials = configparser.ConfigParser()
|
||||
azure_credentials.read(azure_credentials_file)
|
||||
self.client = ComputerVisionClient(azure_credentials['config']['endpoint'], CognitiveServicesCredentials(azure_credentials['config']['api_key']))
|
||||
self.available = True
|
||||
logger.info('Azure Computer Vision ready')
|
||||
except:
|
||||
logger.warning('Error parsing Azure credentials, Azure Computer Vision will not work!')
|
||||
self.available = False
|
||||
|
||||
def __call__(self, img_or_path):
|
||||
if not self.available:
|
||||
return "Engine not available!"
|
||||
|
||||
if isinstance(img_or_path, str) or isinstance(img_or_path, Path):
|
||||
img = Image.open(img_or_path)
|
||||
elif isinstance(img_or_path, Image.Image):
|
||||
img = img_or_path
|
||||
else:
|
||||
raise ValueError(f'img_or_path must be a path or PIL.Image, instead got: {img_or_path}')
|
||||
|
||||
image_io = self._preprocess(img)
|
||||
read_response = self.client.read_in_stream(image_io, raw=True)
|
||||
|
||||
read_operation_location = read_response.headers["Operation-Location"]
|
||||
operation_id = read_operation_location.split("/")[-1]
|
||||
|
||||
while True:
|
||||
read_result = self.client.get_read_result(operation_id)
|
||||
if read_result.status.lower() not in ['notstarted', 'running']:
|
||||
break
|
||||
time.sleep(0.3)
|
||||
|
||||
res = ''
|
||||
if read_result.status == OperationStatusCodes.succeeded:
|
||||
for text_result in read_result.analyze_result.read_results:
|
||||
for line in text_result.lines:
|
||||
res += line.text + ' '
|
||||
|
||||
x = post_process(res)
|
||||
return x
|
||||
|
||||
def _preprocess(self, img):
|
||||
image_io = io.BytesIO()
|
||||
img.save(image_io, format=img.format)
|
||||
image_io.seek(0)
|
||||
return image_io
|
||||
|
||||
|
||||
def post_process(text):
|
||||
text = ''.join(text.split())
|
||||
text = text.replace('…', '...')
|
||||
text = re.sub('[・.]{2,}', lambda x: (x.end() - x.start()) * '.', text)
|
||||
text = jaconv.h2z(text, ascii=True, digit=True)
|
||||
|
||||
return text
|
||||
|
||||
Reference in New Issue
Block a user