training and synthetic data generation code

This commit is contained in:
Maciej Budyś
2022-02-09 20:39:01 +01:00
parent a9085393f4
commit 975dbf4d5e
42 changed files with 7089 additions and 15 deletions

View File

@@ -0,0 +1,85 @@
from pathlib import Path
import cv2
import numpy as np
import pandas as pd
from tqdm import tqdm
from manga_ocr_dev.env import MANGA109_ROOT, BACKGROUND_DIR
def find_rectangle(mask, y, x, aspect_ratio_range=(0.33, 3.0)):
ymin_ = ymax_ = y
xmin_ = xmax_ = x
ymin = ymax = xmin = xmax = None
while True:
if ymin is None:
ymin_ -= 1
if ymin_ == 0 or mask[ymin_, xmin_:xmax_].any():
ymin = ymin_
if ymax is None:
ymax_ += 1
if ymax_ == mask.shape[0] - 1 or mask[ymax_, xmin_:xmax_].any():
ymax = ymax_
if xmin is None:
xmin_ -= 1
if xmin_ == 0 or mask[ymin_:ymax_, xmin_].any():
xmin = xmin_
if xmax is None:
xmax_ += 1
if xmax_ == mask.shape[1] - 1 or mask[ymin_:ymax_, xmax_].any():
xmax = xmax_
h = ymax_ - ymin_
w = xmax_ - xmin_
if h > 1 and w > 1:
ratio = w / h
if ratio < aspect_ratio_range[0] or ratio > aspect_ratio_range[1]:
return ymin_, ymax_, xmin_, xmax_
if None not in (ymin, ymax, xmin, xmax):
return ymin, ymax, xmin, xmax
def generate_backgrounds(crops_per_page=5, min_size=40):
data = pd.read_csv(MANGA109_ROOT / 'data.csv')
frames_df = pd.read_csv(MANGA109_ROOT / 'frames.csv')
BACKGROUND_DIR.mkdir(parents=True, exist_ok=True)
page_paths = data.page_path.unique()
for page_path in tqdm(page_paths):
page = cv2.imread(str(MANGA109_ROOT / page_path))
mask = np.zeros((page.shape[0], page.shape[1]), dtype=bool)
for row in data[data.page_path == page_path].itertuples():
mask[row.ymin:row.ymax, row.xmin:row.xmax] = True
frames_mask = np.zeros((page.shape[0], page.shape[1]), dtype=bool)
for row in frames_df[frames_df.page_path == page_path].itertuples():
frames_mask[row.ymin:row.ymax, row.xmin:row.xmax] = True
mask = mask | ~frames_mask
if mask.all():
continue
unmasked_points = np.stack(np.where(~mask), axis=1)
for i in range(crops_per_page):
p = unmasked_points[np.random.randint(0, unmasked_points.shape[0])]
y, x = p
ymin, ymax, xmin, xmax = find_rectangle(mask, y, x)
crop = page[ymin:ymax, xmin:xmax]
if crop.shape[0] >= min_size and crop.shape[1] >= min_size:
out_filename = '_'.join(
Path(page_path).with_suffix('').parts[-2:]) + f'_{ymin}_{ymax}_{xmin}_{xmax}.png'
cv2.imwrite(str(BACKGROUND_DIR / out_filename), crop)
if __name__ == '__main__':
generate_backgrounds()