training and synthetic data generation code
This commit is contained in:
85
manga_ocr_dev/data/generate_backgrounds.py
Normal file
85
manga_ocr_dev/data/generate_backgrounds.py
Normal file
@@ -0,0 +1,85 @@
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from tqdm import tqdm
|
||||
|
||||
from manga_ocr_dev.env import MANGA109_ROOT, BACKGROUND_DIR
|
||||
|
||||
|
||||
def find_rectangle(mask, y, x, aspect_ratio_range=(0.33, 3.0)):
|
||||
ymin_ = ymax_ = y
|
||||
xmin_ = xmax_ = x
|
||||
|
||||
ymin = ymax = xmin = xmax = None
|
||||
|
||||
while True:
|
||||
if ymin is None:
|
||||
ymin_ -= 1
|
||||
if ymin_ == 0 or mask[ymin_, xmin_:xmax_].any():
|
||||
ymin = ymin_
|
||||
|
||||
if ymax is None:
|
||||
ymax_ += 1
|
||||
if ymax_ == mask.shape[0] - 1 or mask[ymax_, xmin_:xmax_].any():
|
||||
ymax = ymax_
|
||||
|
||||
if xmin is None:
|
||||
xmin_ -= 1
|
||||
if xmin_ == 0 or mask[ymin_:ymax_, xmin_].any():
|
||||
xmin = xmin_
|
||||
|
||||
if xmax is None:
|
||||
xmax_ += 1
|
||||
if xmax_ == mask.shape[1] - 1 or mask[ymin_:ymax_, xmax_].any():
|
||||
xmax = xmax_
|
||||
|
||||
h = ymax_ - ymin_
|
||||
w = xmax_ - xmin_
|
||||
if h > 1 and w > 1:
|
||||
ratio = w / h
|
||||
if ratio < aspect_ratio_range[0] or ratio > aspect_ratio_range[1]:
|
||||
return ymin_, ymax_, xmin_, xmax_
|
||||
|
||||
if None not in (ymin, ymax, xmin, xmax):
|
||||
return ymin, ymax, xmin, xmax
|
||||
|
||||
|
||||
def generate_backgrounds(crops_per_page=5, min_size=40):
|
||||
data = pd.read_csv(MANGA109_ROOT / 'data.csv')
|
||||
frames_df = pd.read_csv(MANGA109_ROOT / 'frames.csv')
|
||||
|
||||
BACKGROUND_DIR.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
page_paths = data.page_path.unique()
|
||||
for page_path in tqdm(page_paths):
|
||||
page = cv2.imread(str(MANGA109_ROOT / page_path))
|
||||
mask = np.zeros((page.shape[0], page.shape[1]), dtype=bool)
|
||||
for row in data[data.page_path == page_path].itertuples():
|
||||
mask[row.ymin:row.ymax, row.xmin:row.xmax] = True
|
||||
|
||||
frames_mask = np.zeros((page.shape[0], page.shape[1]), dtype=bool)
|
||||
for row in frames_df[frames_df.page_path == page_path].itertuples():
|
||||
frames_mask[row.ymin:row.ymax, row.xmin:row.xmax] = True
|
||||
|
||||
mask = mask | ~frames_mask
|
||||
|
||||
if mask.all():
|
||||
continue
|
||||
|
||||
unmasked_points = np.stack(np.where(~mask), axis=1)
|
||||
for i in range(crops_per_page):
|
||||
p = unmasked_points[np.random.randint(0, unmasked_points.shape[0])]
|
||||
y, x = p
|
||||
ymin, ymax, xmin, xmax = find_rectangle(mask, y, x)
|
||||
crop = page[ymin:ymax, xmin:xmax]
|
||||
|
||||
if crop.shape[0] >= min_size and crop.shape[1] >= min_size:
|
||||
out_filename = '_'.join(
|
||||
Path(page_path).with_suffix('').parts[-2:]) + f'_{ymin}_{ymax}_{xmin}_{xmax}.png'
|
||||
cv2.imwrite(str(BACKGROUND_DIR / out_filename), crop)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
generate_backgrounds()
|
||||
Reference in New Issue
Block a user