training and synthetic data generation code

This commit is contained in:
Maciej Budyś
2022-02-09 20:39:01 +01:00
parent a9085393f4
commit 975dbf4d5e
42 changed files with 7089 additions and 15 deletions

View File

View File

@@ -0,0 +1,85 @@
from pathlib import Path
import cv2
import numpy as np
import pandas as pd
from tqdm import tqdm
from manga_ocr_dev.env import MANGA109_ROOT, BACKGROUND_DIR
def find_rectangle(mask, y, x, aspect_ratio_range=(0.33, 3.0)):
ymin_ = ymax_ = y
xmin_ = xmax_ = x
ymin = ymax = xmin = xmax = None
while True:
if ymin is None:
ymin_ -= 1
if ymin_ == 0 or mask[ymin_, xmin_:xmax_].any():
ymin = ymin_
if ymax is None:
ymax_ += 1
if ymax_ == mask.shape[0] - 1 or mask[ymax_, xmin_:xmax_].any():
ymax = ymax_
if xmin is None:
xmin_ -= 1
if xmin_ == 0 or mask[ymin_:ymax_, xmin_].any():
xmin = xmin_
if xmax is None:
xmax_ += 1
if xmax_ == mask.shape[1] - 1 or mask[ymin_:ymax_, xmax_].any():
xmax = xmax_
h = ymax_ - ymin_
w = xmax_ - xmin_
if h > 1 and w > 1:
ratio = w / h
if ratio < aspect_ratio_range[0] or ratio > aspect_ratio_range[1]:
return ymin_, ymax_, xmin_, xmax_
if None not in (ymin, ymax, xmin, xmax):
return ymin, ymax, xmin, xmax
def generate_backgrounds(crops_per_page=5, min_size=40):
data = pd.read_csv(MANGA109_ROOT / 'data.csv')
frames_df = pd.read_csv(MANGA109_ROOT / 'frames.csv')
BACKGROUND_DIR.mkdir(parents=True, exist_ok=True)
page_paths = data.page_path.unique()
for page_path in tqdm(page_paths):
page = cv2.imread(str(MANGA109_ROOT / page_path))
mask = np.zeros((page.shape[0], page.shape[1]), dtype=bool)
for row in data[data.page_path == page_path].itertuples():
mask[row.ymin:row.ymax, row.xmin:row.xmax] = True
frames_mask = np.zeros((page.shape[0], page.shape[1]), dtype=bool)
for row in frames_df[frames_df.page_path == page_path].itertuples():
frames_mask[row.ymin:row.ymax, row.xmin:row.xmax] = True
mask = mask | ~frames_mask
if mask.all():
continue
unmasked_points = np.stack(np.where(~mask), axis=1)
for i in range(crops_per_page):
p = unmasked_points[np.random.randint(0, unmasked_points.shape[0])]
y, x = p
ymin, ymax, xmin, xmax = find_rectangle(mask, y, x)
crop = page[ymin:ymax, xmin:xmax]
if crop.shape[0] >= min_size and crop.shape[1] >= min_size:
out_filename = '_'.join(
Path(page_path).with_suffix('').parts[-2:]) + f'_{ymin}_{ymax}_{xmin}_{xmax}.png'
cv2.imwrite(str(BACKGROUND_DIR / out_filename), crop)
if __name__ == '__main__':
generate_backgrounds()

View File

@@ -0,0 +1,103 @@
import xml.etree.ElementTree as ET
from pathlib import Path
import cv2
import pandas as pd
from tqdm import tqdm
from manga_ocr_dev.env import MANGA109_ROOT
def get_books():
root = MANGA109_ROOT / 'Manga109s_released_2021_02_28'
books = (root / 'books.txt').read_text().splitlines()
books = pd.DataFrame({
'book': books,
'annotations': [str(root / 'annotations' / f'{book}.xml') for book in books],
'images': [str(root / 'images' / book) for book in books],
})
return books
def export_frames():
books = get_books()
data = []
for book in tqdm(books.itertuples(), total=len(books)):
tree = ET.parse(book.annotations)
root = tree.getroot()
for page in root.findall('./pages/page'):
for frame in page.findall('./frame'):
row = {}
row['book'] = book.book
row['page_index'] = int(page.attrib['index'])
row['page_path'] = str(Path(book.images) / f'{row["page_index"]:03d}.jpg')
row['page_width'] = int(page.attrib['width'])
row['page_height'] = int(page.attrib['height'])
row['id'] = frame.attrib['id']
row['xmin'] = int(frame.attrib['xmin'])
row['ymin'] = int(frame.attrib['ymin'])
row['xmax'] = int(frame.attrib['xmax'])
row['ymax'] = int(frame.attrib['ymax'])
data.append(row)
data = pd.DataFrame(data)
data.page_path = data.page_path.apply(lambda x: '/'.join(Path(x).parts[-4:]))
data.to_csv(MANGA109_ROOT / 'frames.csv', index=False)
def export_crops():
crops_root = MANGA109_ROOT / 'crops'
crops_root.mkdir(parents=True, exist_ok=True)
margin = 10
books = get_books()
data = []
for book in tqdm(books.itertuples(), total=len(books)):
tree = ET.parse(book.annotations)
root = tree.getroot()
for page in root.findall('./pages/page'):
for text in page.findall('./text'):
row = {}
row['book'] = book.book
row['page_index'] = int(page.attrib['index'])
row['page_path'] = str(Path(book.images) / f'{row["page_index"]:03d}.jpg')
row['page_width'] = int(page.attrib['width'])
row['page_height'] = int(page.attrib['height'])
row['id'] = text.attrib['id']
row['text'] = text.text
row['xmin'] = int(text.attrib['xmin'])
row['ymin'] = int(text.attrib['ymin'])
row['xmax'] = int(text.attrib['xmax'])
row['ymax'] = int(text.attrib['ymax'])
data.append(row)
data = pd.DataFrame(data)
n_test = int(0.1 * len(data))
data['split'] = 'train'
data.loc[data.sample(len(data)).iloc[:n_test].index, 'split'] = 'test'
data['crop_path'] = str(crops_root) + '\\' + data.id + '.png'
data.page_path = data.page_path.apply(lambda x: '/'.join(Path(x).parts[-4:]))
data.crop_path = data.crop_path.apply(lambda x: '/'.join(Path(x).parts[-2:]))
data.to_csv(MANGA109_ROOT / 'data.csv', index=False)
for page_path, boxes in tqdm(data.groupby('page_path'), total=data.page_path.nunique()):
img = cv2.imread(str(MANGA109_ROOT / page_path))
for box in boxes.itertuples():
xmin = max(box.xmin - margin, 0)
xmax = min(box.xmax + margin, img.shape[1])
ymin = max(box.ymin - margin, 0)
ymax = min(box.ymax + margin, img.shape[0])
crop = img[ymin:ymax, xmin:xmax]
out_path = (crops_root / box.id).with_suffix('.png')
cv2.imwrite(str(out_path), crop)
if __name__ == '__main__':
export_frames()
export_crops()